Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Characteristics of the low temperature SCR of NO_x with NH₃ over TiO₂

Md. Azhar Uddin*, Koichiro Shimizu, Koji Ishibe, Eiji Sasaoka

Department of Environmental Chemistry and Materials, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan

ARTICLE INFO

Article history: Received 18 February 2009 Received in revised form 29 May 2009 Accepted 2 June 2009 Available online 10 June 2009

Keywords: Low temperature SCR NO_x TiO₂ Activated carbon SiO₂

1. Introduction

NO is one of the main atmospheric pollutants that can cause acid rain, and photochemical smog. The main sources of NO are the flue gases of fossil fuel combustion in power generation and automobiles mobile exhaust gases. The removal of NO from the flue gases and the emission of automobiles has been one of the main topics in atmospheric pollution control technologies. Among all the processes for the removal of NO, the most ideal process should be the direct decomposition of NO to N_2 and O_2 . However, the dissociation of NO requires very high temperature and no effective catalyst has been found for this reaction so far. A well-known achievable process, which had been commercialized, is selective catalytic reduction (SCR) of NO with NH₃. The effective catalysts applied in SCR are V_2O_5 with TiO₂ as a support material and WO₃ and MoO_3 as catalytic additives [1-4]. The disadvantage of the SCR of NO_x with NH₃ over V₂O₅/TiO₂-based catalysts is that these catalysts are not effective below 250 °C. The outlet temperatures of flue gases containing NO_x generated from electric power plants, shaft furnaces, and waste incinerators are usually lower than 150 °C. Therefore, it is necessary to develop a low temperature SCR process. An effective low temperature SCR process would permit NO_x removal (DeNO_x) unit to be installed downstream of the air preheater and electrostatic precipitators (ESP) for dust removal in some practical processes so that the attack by the NH₃ leaked from DeNO_x unit on the equipment of the preheater and ESP could be avoided. The leaked NH₃ can be absorbed by the desulfurization process.

ABSTRACT

Low temperature selective catalytic reduction (LT-SCR) of NO+NO₂ mixture with NH₃ was investigated over TiO₂, SiO₂ and activated carbon in a conventional flow type fixed-bed reactor at 100 °C under atmospheric pressure. The effects of gas composition such as presence of SO₂ and NH₃ and the ratio of NO₂/NO in the feed-stream on the LT-SCR have been studied. The presence of SO₂ and O₂ was essential for the selective removal of NO with NH₃ over TiO₂. The presence of SO₂ contributed to the oxidation of NO to NO₂ over TiO₂. If NO₂ existed with NO in the reaction system, the presence of SO₂ was not necessary for the removal of NO over TiO₂. The following two reactions were suggested to occur over TiO₂: NO+NO₂+2NH₃ \rightarrow 2N₂+3H₂O (1) and 2NO₂+2NH₃ \rightarrow N₂+NH₄NO₃+H₂O (2). The reaction (2) occurred on all three catalysts, however the reaction (1) did not proceed significantly over SiO₂.

© 2009 Elsevier B.V. All rights reserved.

In recent years, considerable research efforts have been devoted to the development of low temperature SCR (LT-SCR) of NO with NH₃. The most widely studied catalysts include active carbon fibers [5,6] metal oxides [7–9] and carbon fiber-supported metal oxides [10–13]. Most of the LT-SCR of NO reactions was studied at well above 100 C.

The selective reduction of equimolar amounts of NO and NO_x occurs at lower temperatures and with much faster rate than the reduction of NO according to the following reaction stoichiometry: $NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$. This reaction was designated as "fast-SCR" by Koebel et al. [14,15]. The enhanced rate of this reaction has been long known and it is considered as one of the effective method for automotive NO_x reduction [16,17]. Generally, NO_x in diesel exhaust gas is mainly consists of NO, so a strong oxidation catalyst is necessary at the upstream of the SCR catalyst in order to increase the fraction of NO₂ in the exhaust. Pt-based catalysts are known to be very active for NO oxidation [18]. At low temperatures (<150 °C) NO₂ can react with NH₃ with the formation of ammonium nitrate according to the following reaction: $2NH_3 + 2NO_2 \rightarrow NH_4NO_3 + N_2 + H_2O$. The detail of this reaction is given in the literature [14]. This reaction may be considered as a selective $DeNO_x$ reaction since 50% of the NO₂ is reduced to N₂. However, periodic removal of the ammonium nitrate salt from the catalyst surface by washing with H₂O is needed for regeneration of the catalyst.

Previously we have reported that TiO_2 , ZrO_2 , and Al_2O_3 catalyzed the LT-SCR of NO with NH₃ at 90 °C and the addition of Cl⁻ and Br⁻ ions to these catalysts enhanced the catalytic activities [19]. The main results obtained in these studies were that the SCR reaction was interrupted (ceased to occur) when SO₂ was absent from the feed gas indicating that SO₂ participated in the reduction process of

^{*} Corresponding author. Tel.: +81 86 251 8897 fax: +81 86 251 8897. *E-mail address:* alazhar@cc.okayama-u.ac.jp (Md.A. Uddin).

^{1381-1169/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2009.06.002

NO at low temperature. The mechanism of low temperature reduction of NO to N₂ was proposed to occur through an intermediate of NH₄-NO₂, which can be decomposed into N₂ and H₂O below $100\,^{\circ}$ C. The activities of these three catalysts decayed with reaction time as a result of the accumulation of ammonium sulfate and nitrate salts plugging pores of the catalysts. However, the deactivated catalysts could be easily regenerated by washing with water. Although the SO₂ effects on the low temperature SCR DeNO_x reaction have already been reported in our previous study for TiO₂, ZrO₂ and Al₂O₃ catalysts, however the effect of NO and NO₂ ratio and the presence of H₂O in the feed gas have not been studied yet.

In this work, the behavior the low temperature SCR of NO + NO₂ mixture with NH₃ over TiO₂, SiO₂ and an activated carbon were studied. Particularly, the effects of NO₂/NO ratio in the inlet gases on the LT-SCR of NO_x were investigated in details.

2. Experimental

2.1. Materials

TiO₂ and SiO₂ and activated carbon were commercial samples (TiO₂ from, Sakai Chemicals Co.; SiO₂ from Mizusawa Chem. Ind. Co.; activated carbon from Wako Pure Chemical Co. Ltd.). TiO₂ and SiO₂ were calcined in air for at 500 °C for 1 h, and activated carbon (AC) was calcined in the N2 flow at 500 °C for 1 h. The calcined samples were crushed and sieved to granules of 1.0 mm. The specific surface area of the TiO₂, SiO₂ and AC was 86, 570 and $1200 \text{ m}^2/\text{g}$, respectively and the bulk density of the samples (average grain size: 1.0 mm) was 0.82, 0.75 and 0.38 g/cm³, respectively.

2.2. Apparatus and procedure

The SCR reaction was carried out using a flow type fixed-bed tubular reactor system at 90-100 °C under atmospheric pressure. In a typical SCR experiment, 1 ml of catalyst was placed in the reactor made of a quartz tube of 1.5 cm i.d. and then catalyst bed was heated in N₂ flow to the desired reaction temperature with an electrical furnace equipped with an electronic temperature controller. The SCR reaction commenced when a mixture of NO (250 ppm), SO₂ (800 ppm), NH₃ (500 ppm), O₂ (5%), H₂O (10%), CO₂ (14%), and N₂ balance was fed into the reactor at 200 cm³ (STP)/min. This reaction conditions will be designated as standard system in this paper hereafter. The effect of feed gas composition was studied by changing the concentration of the corresponding components keeping the concentration of other gases constant except for N₂ which was used as a balance gas. The effect of NO₂/NO in the feed was investigated by varying the NO_2/NO_x ($NO_x = NO + NO_2$) from 0 to 1, but keeping the total concentration of NO_x at 250 ppm in the feed. The inlet and outlet concentration of NO and NO2 was measured using a chemiluminescent NO analyzer (Yanako Co., Model ES-7) after NO₂ was converted to NO using a solution containing KI and H_2SO_4 (2K⁺I⁻ + NO₂ + $H_2O \rightarrow NO + 2K^+OH^- + I_2$). Thus, when the effluent containing NO_x is passed through the KI + H₂SO₄ trap, NO analyzer gives the value for NO_x concentration and when the stream is injected directly to NO analyzer it gives the concentration of NO only in the effluent. Therefore the difference between the NO_x and NO concentration is the NO₂ concentration. The concentration of N₂ was analyzed using a GC (Yanako G3800) equipped with a thermal conductivity detector with molecular sieve 5A column. Ammonium nitrate, which was accumulated over the catalysts during the experiment, was detected with an ion chromatograph after dissolution in H_2O .

In this paper, the results of NO_x analyses are presented mainly as the concentration of NO and NO_x ($NO_x = NO + NO_2$) at the inlet and outlet of the reactor. Generally, conversion of NO is used to

Concentration /ppm 150 100 50 0 1 2 3 Time /h

 $NO_{2} = NO + NO_{3}$

Fig. 1. Outlet concentration of NO_x and NO for low temperature SCR of NO over TiO₂ catalyst. Inlet gas: NO (250 ppm), NH₃ (500 ppm), SO₂ (800 ppm), O₂ (5%), CO₂ (14%). H₂O (10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

evaluate the catalytic activity for standard SCR process. In this work we investigated mainly the effect of NO₂/NO ratio in the feed on the conversion of both NO and NO₂ during low temperature SCR and we presented our results with NO and NO_x concentration which is more informative than the NO or NO_x conversion data.

3. Results and discussion

250

200

3.1. Effect of the presence of NH_3 and SO_2 on the removal of NO over TiO₂

The effects of the presence of NH₃ and SO₂ on the low temperature SCR of NO were examined at 100°C before studying the effect of NO₂/NO ratio on SCR. Fig. 1 shows the outlet concentrations of NO and NO_x (NO+NO₂) as a function of time on stream. The concentration of NO at the reactor outlet increased with the time on stream at the initial stage and then became almost steady in the later stages. The initial low decrease in NO concentration is due to the adsorption of NO as adsorbed NO_x species on the TiO₂ surface and steady state SCR of NO was achieved after about 1.5 h time on stream. It is also evident from Fig. 1 that a small amount of NO₂ was formed in the standard system and the NO₂ formation reached a steady state value through a maximum at around 0.5 h time on stream. This result suggested that the oxidation of NO occurred over the TiO₂ catalyst during the SCR. In our previous paper, we presented a mechanism that included the oxidation step as an elemental reaction [9].

In order to elucidate the effects of the presence of NH₃ on the oxidation of NO, the reaction was carried out in the absence of NH₃. The NO₂ formation and/or desorption was accelerated in the absence of NH₃ as shown in Fig. 2. The overshoot in the NO_x concentration

Fig. 2. Outlet concentration of NO_v and NO in the absence of NH₃ over TiO₂ catalyst. Inlet gas: NO (250 ppm), NH₃ (0 ppm), SO₂ (800 ppm), O₂ (5%), CO₂ (14%), H₂O (10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

Fig. 3. Outlet concentration of NO_x and NO in the absence of SO₂ over TiO₂ catalyst. Inlet gas: NO (250 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

was induced by NO_2 desorption, because the adsorbed NO_2 was desorbed by the adsorption of SO_2 as SO_3 which is more strongly adsorbed than NO_2 .

The results of the effect of SO_2 on the SCR of NO with NH_3 are shown in Fig. 3. We have previously reported that SCR of NO with NH_3 did not occur in the absence of SO_2 [9]. It is also evident in Fig. 3 that the outlet concentration of NO remained same as the inlet concentration i.e. no reaction occurred in the absence of SO_2 . Moreover, NO_2 formation was not observed in the absence of SO_2 (data is not shown). From these results, it was confirmed that SO_2 contributed to the NO oxidation and it was indispensable for the NH_3 -SCR of NO at the low temperatures.

3.2. Effect of the presence of NO_2 on the NH_3 -SCR over TiO_2

In order to confirm the hypothesis that the oxidation of NO to NO_2 is an essential step in the LT-SCR of NO, the reaction was carried out in the absence of SO₂, but in the presence of NO₂ with NO (NO: 125 ppm and NO₂: 125 ppm). As shown in Fig. 4, a large quantity of NO_x was removed even in the absence of SO₂: about 75% of inlet NO_x was disappeared, however about half of the NO remained unchanged. From this result, it might be concluded that in the presence of both NO and NO₂, the presence of SO₂ is not essential for SCR. That is, the oxidation of NO to NO₂ is indispensable step in the LT-SCR of NO.

3.3. Effect of the inlet NO $_2$ to NO $_x$ ratio on removal of NO $_x$ over TiO $_2$

As it was evident from Fig. 4 that oxidation of NO to NO_2 is a necessary step for the LT-SCR of NO_x , it is of great interest to investigate

Fig. 4. Outlet concentration of NO_x and NO in the presence of NO_2 and absence of SO₂. Inlet gas: NO (125 ppm), NO₂ (125 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

Fig. 5. Effect of inlet NO₂/NO_x ratio and water vapor on the low temperature SCR of NO over TiO₂. Inlet gas: NO_x (NO + NO₂ = 250 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (0% or 10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

the effect of ratio of NO₂ to NO_x on SCR of NO_x. The effect ratio of NO₂ to NO_x on the removal of NO_x was examined in the absence of SO₂ over TiO₂ at 100 °C. In Fig. 5, the outlet concentration of NO_x was plotted against the inlet ratio of NO₂/NO_x. In the absence of H₂O, the outlet concentration of NO_x was the lowest at the NO/NO_x ratio of 0.5 i.e. at NO/NO₂ ratio of 1.0. In the presence of H₂O, the outlet concentration of NO_x monotonically decreased with the increase of NO₂/NO ratio. The reason for the differences in the dependency of outlet concentration of NO_x on NO₂/NO_x ratio in the absence and presence H₂O can be explained as follows: in the presence of H₂O, the inlet mole ratio of NO₂/NO_x might have changed on the catalyst surface before the occurrence of SCR. In order to confirm the conversion of NO₂ to NO, the reaction was examined in the absence of SO₂ and NH₃. Fig. 6 shows the outlet concentration of NO_x

Fig. 6. Effect of water vapor on the conversion of NO₂ to NO in the absence of SO₂ and NH₃ over TiO₂. Inlet gas: NO (125 ppm), NO₂ (125 ppm), NH₃ (0 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (0% or 10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

Table 1

Concentration of N_2 formed on TiO₂.

Inlet ratio: NO ₂ /NO _x	NO ₃ ⁻ formed/NO _x reacted	Inlet NO _x (ppm)	N ₂ formed (ppm)
0.5 (without H ₂ O)	4	250	266
1.0 (without H ₂ O)	46	250	98

Reaction temperature: $100 \circ C$; SV: $12,000 h^{-1}$, NO_x: NO+NO₂.

 $(NO + NO_2)$ as a function of time on stream for the reaction of NO (125 ppm) and NO₂ (125 ppm) over TiO₂ in the absence of both NH₃ and SO_2 . It can be seen from Fig. 6(a) that in the presence of H_2O , the outlet concentration of NO exceeded the inlet concentration of NO (125 ppm) for the first 2 h of stream. During this time, the concentration NO₂ (difference between the concentration of NO_x and NO) decreased significantly. These results indicate that NO₂ was converted to NO on TiO₂ surface. However the outlet concentration of NO_x (NO + NO₂) was much lower than the inlet concentration of NO_x (250 ppm) for the first 2 h. The differed amount in NO_x concentration between the inlet and outlet streams can be attributed to the adsorption of NO_x species on the TiO₂ surface. After about 2 h on stream, the outlet concentration of NO started to decrease and that of NO₂ started to increase until the catalytic surface became saturated with the adsorbed NO_x species. As shown in Fig. 6(b), the NO_x adsorption and NO oxidation were accelerated a little by the presence of H₂O. From these experiments, we suggested that the NO_2/NO_x ratio on the surface of the catalyst was not the same as the inlet NO_2/NO_x ratio if the conversion of NO_2 to NO occurred much faster than the low temperature SCR.

In Figs. 4 and 5, we reported the decrease of NO_x concentration due to the reactions that occurred over the TiO_2 , however it was not evident from these results whether the SCR of NO_x to N_2 occurred on the TiO_2 surface. In order to elucidate the nature of LT-SCR of NO_x over TiO_2 catalyst, we determined the formation of N_2 quantitatively with a gas chromatograph using He as a balance gas instead of N_2 in the feed. As shown in Table 1, almost all of the reduced NO_x was converted to N_2 when the inlet NO_2/NO_x was controlled to 0.5 (i.e., with the equimolar amount of NO and NO_2 in the feed-stream) in the absence of H_2O . From this result, it is evident that the following reaction, which has been reported to occur in the high temperature SCR [20] also occurred in this reaction system:

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$$
 (1)

Furthermore, the amount of ammonium nitrate formed on the catalyst during the experiment was quantitatively analyzed with an ion chromatograph (Table 2). When the reaction was carried out at a NO_2/NO_x ratio of 1.0 (i.e., in the absence of NO), about half of the NO_2 reacted was converted to N_2 (shown in Table 1) and the other half was converted to ammonium nitrate (shown in Table 2). From this result, it is established that the following reaction occurred in this reaction system:

$$2NO_2 + 2NH_3 \rightarrow N_2 + NH_4NO_3 + H_2O \tag{2}$$

From the above results it can be suggested that both of the reactions (1) and (2) occur in the low temperature SCR of NO_x. As shown in Table 2, in the presence of H₂O at NO₂/NO_x = 0.5, a small amount of NO_x was converted to NH₄NO₃ and remained deposited

Fig. 7. Low temperature SCR of NO+NO₂ with ammonia over SiO₂ and activated carbon in the absence of SO₂ and H₂O. Inlet gas: NO (125 ppm), NO₂ (125 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (0%), N₂ (balance), SV: 12,000 h^{-1} ; reaction temperature: 100 °C.

on the used TiO₂ surface (NO₃⁻/NO_x reacted = 15%). In the absence H₂O, NO_x was also converted to NH₄NO₃, however the amount of NH₄NO₃ found on the used TiO₂ was 1/3 of that found in the presence of H₂O. In the absence of H₂O (at NO₂/NO_x = 0.5), the amount of NH₄⁺ ion was higher than that of NO₃⁻ ion. At present, the reason for this discrepancy is not known yet. With NO₂ to only in the feed as NO_x species (i.e., NO₂/NO_x = 1.0), it is evident that half of the NO₂ reacted was converted to NH₄NO₃ in the presence and absence of H₂O. It is noteworthy that no N₂O was formed in such low temperature on the catalysts used in this study. It is known that N₂O can be formed as an undesired product from oxidation of NH₃ with O₂ over Pt–Rh catalyst at high temperature and high pressure.

3.4. Low temperature NH₃-SCR over SiO₂ and activated carbon

As the reaction (1) and (2) occurred over the TiO_2 in the absence of SO₂, it was thought that these reactions may also occur over other porous material in the NO–NO₂ stream. In order to confirm this idea, the activity of SiO₂ and the activated carbon for LT-SCR was examined in the NO–NO₂ system. Fig. 7 shows the outlet concentration of NO_x during the SCR over SiO₂ and activated carbon for equimolar amount of NO and NO₂ in the feed and in the absence of SO₂ and H₂O. For SiO₂, the outlet concentration of NO decreased slightly from the inlet concentration and the outlet concentration of NO₂ (difference between the concentration of NO_x and NO in Fig. 7) was very low. With activated carbon, initially the outlet concentration of NO increased slightly than the inlet NO concentration (up to

Table 2 Amount of NO3⁻ and NH4⁺ ion formed on TiO2 after 5 h on stream.

Inlet ratio: NO ₂ /NO _x	NO _x reacted (mol)	NO ₃ ⁻ formed (mol)	NH4 ⁺ formed (mol)	NO ₃ ⁻ /NO _x reacted (%)
0.5 (with H ₂ O)	$4.6 imes 10^{-4}$	$7.1 imes 10^{-5}$	$7.5 imes 10^{-5}$	15
0.5 (without H ₂ O)	$6.7 imes 10^{-4}$	2.4×10^{-5}	$1.9 imes 10^{-4}$	4
1.0 (with H ₂ O)	$5.8 imes 10^{-4}$	$2.9 imes 10^{-4}$	$2.0 imes 10^{-4}$	49
1.0 (without H ₂ O)	$6.1 imes 10^{-4}$	$2.8 imes 10^{-4}$	$3.9 imes 10^{-4}$	46

Reaction temperature: $100 \circ C$; SV: $12,000 h^{-1}$; NO_x: NO + NO₂.

Fig. 8. Outlet concentration of NO_x and NO over SiO₂ in the absence of SO₂ and H₂O. Inlet gas: NO₂ (250 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (0%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

0.5 h on stream), however no NO₂ was detected in the reactor outlet. These results indicate that mainly the reaction (2) occurred over SiO₂ and activated carbon involving NO₂. The following reactions (3)–(6) are the elemental steps of reaction (2).

$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2 \tag{3}$$

 $HNO_3 + NH_3 \rightarrow NH_4NO_3 \tag{4}$

 $HNO_2 + NH_3 \rightarrow NH_4NO_2 \tag{5}$

$$NH_4NO_2 \rightarrow N_2 + 2H_2O \tag{6}$$

These reactions have been proposed as elemental steps of reaction (2), and some of these reactions are known to occur in the nitric acid production process.

The reaction mechanism of fast-SCR i.e. reaction (1) is not well understood yet. Sun et al. [21] proposed a mechanism for low temperature NO reduction with ammonia on Fe-ZSM-5 catalysts. They assume that NO and NO₂ reacted with H₂O and NH₃ to form ammonium nitrate which decomposed to N₂. We may suggest the following individual reaction steps for reaction (1):

$$NO_2 + NO \rightarrow N_2O_3 \tag{7}$$

 $N_2O_3 + H_2O \rightarrow 2HNO_2 \tag{8}$

 $2HNO_2 + 2NH_3 \rightarrow 2NH_4NO_2 \tag{5'}$

$$2NH_4NO_2 \rightarrow 2N_2 + 4H_2O \tag{6'}$$

The idea is that N_2O_3 , formed from NO_2 and NO, reacts with H_2O according to the reaction (8) forming HNO_2 . Then N_2 is produced via the formation and decomposition of ammonium nitrite according to reactions (5') and (6') as indicated by Koebel et al. [14]. Ammonium nitrite is known to be very unstable compounds decomposing at temperatures above $60 \,^{\circ}C$.

We assumed that a catalyst which has some activity for the reaction (2) might also have some activity for the reaction (1). However, SiO₂ and activated carbon have some activity only for the reaction (2) but no activity for reaction (1) was observed as shown in Fig. 7. From these results, it may be concluded that our assumptions are not correct. For the clarification of these two mechanisms, more detailed studies are needed. The activity of the SiO₂ for reaction (2) was examined in the NO₂ system in the absence of SO₂ and H₂O. As shown in Fig. 8, the activity was slightly lower than that of TiO₂ (shown in Fig. 5). This result indicates that the reaction (2) occurred catalytically on SiO₂. Therefore, it may be possible that the reaction (2) can be used as a step of NH₃-SCR at low temperature using porous catalysts such as SiO₂, if NO can be converted to NO₂ over a separate (or different) catalyst in the first step.

Fig. 9. Effect of inlet NO_2/NO_x ratio and water vapor on the low temperature SCR over (a) SiO₂ and (b) activated carbon. Inlet gas: NO_x (NO+NO₂ = 250 ppm), NH₃ (500 ppm), SO₂ (0 ppm), O₂ (5%), CO₂ (14%), H₂O (0% or 10%), N₂ (balance), SV: 12,000 h⁻¹; reaction temperature: 100 °C.

3.5. Effect of the inlet NO_2 to NO_x ratio on removal of NO_x over SiO_2 and activated carbon

The effect of inlet NO₂ to NO_x ratio and the presence of H₂O on the removal of NO_x were examined in the absence of SO_2 over SiO_2 and activated carbon at 100 °C. In Fig. 9, the outlet concentration of NO_x was plotted against the inlet ratio of NO₂/NO_x for (a) SiO₂ and (b) activated carbon. Unlike the case with TiO₂ (Fig. 5), water vapor has no effect on the removal of NO_x over SiO₂. Moreover, the NO_x removal rate on SiO₂ is much lower than that on TiO₂. As we mentioned earlier that reaction (1) is suppressed by the presence of H₂O, the above results indicate that reaction (1) did not occur on SiO₂. It is also worth mentioning that for TiO₂, H₂O has no effect on the reaction (2). Accordingly, we can suggest that the reaction (2) which is not affected by the presence of H_2O occurred on SiO₂. On the other hand activated carbon showed different activity compared to SiO₂ for this reaction system: in the absence of H₂O, NO_x removal behavior was quite similar to that of TiO₂ in the presence of H₂O (Fig. 5), i.e. NO_x removal rate increased smoothly with the increase of NO_2/NO_x inlet ratio (i.e. with the increase of NO_2 concentration). In the presence of H_2O , NO_x removal rate also increased with the increase of NO_2/NO_x inlet ratio linearly, however the extent of NO_x removal rate was much lower than in the absence of H_2O .

From the above results, no correlation between the specific surface area and the $deNO_x$ activities of the catalysts was observed. Although the surface area of TiO_2 is the smallest, it provides the highest catalytic activity for NO_x reduction. The surface characteristics of catalysts such as Brønsted acid/base sites in TiO_2 catalysts can affect the $deNO_x$ behavior of TiO_2 catalysts. The conventional high temperature SCR reaction is a redox process that occurs with a redox or Mars-van Krevelen-type mechanism on vanadium-based (containing TiO₂) catalysts. Ammonia adsorbs on acid sites in two different strongly held species: (i) molecularly adsorbed ammonia, through a Lewis-type interaction and (ii) ammonia observed as ammonium ions, over Brønsted acidic–OH surface hydroxyl groups [22–24]. TiO₂ (anatase) surface has active centers of both Lewis and Brønsted types, with which ammonia interacts via coordination bonding or by the creation of ammonium-ion (NH⁴⁺). It has been shown that NO is adsorbed on TiO₂ forming of a surface nitrosyl species, coordinated to Ti⁴⁺ sites [25]. It is also known that presence of water molecule can increase the Brønsted acidity of TiO₂ or convert Lewis acid sites to Brønsted acid sites. On the other hand, it has also been reported for the study of influence of H₂O on the acidity of TiO₂ using adsorption NH₃ as a basic probe molecule that the primary effect of H₂O is displacement of strongly adsorbed basic probe molecules from Brønsted sites, rather than the conversion of Lewis sites to Brønsted sites [26]. In our present study we have not determined the amount of acid amount and acid sites of the catalysts by adsorption of any probe molecules. So, the effect of acid sites of the catalysts on the low temperature DeNO_x activity of TiO₂ in the presence of water cannot be clarified at this stage.

4. Conclusions

Low temperature SCR of NO + NO₂ mixture with NH_3 over TiO₂, SiO₂ and activated carbon were studied using a conventional flow type packed-bed reactor at 100 °C under atmospheric pressure. The presence of SO₂, and NH₃ was essential for the removal of NO over TiO₂. SO₂ played a vital role in the oxidation of NO to NO₂ over TiO₂. In the coexistence of NO and NO₂ in the reaction system, the presence of SO₂ is not essential for the SCR of NO over TiO₂. The NO_x removal activity was highest at the NO/NO₂ molar ratio of 1. It was clarified that the following two reactions occurred over TiO₂: NO + NO₂ + 2NH₃ \rightarrow 2N₂ + 3H₂O (1) and $2NO_2 + 2NH_3 \rightarrow N_2 + NH_4NO_3 + H_2O$ (2). The reaction (2) occurred on all three catalysts, however the reaction (1) did not proceed significantly over SiO₂.

Acknowledgment

This work was supported by 21th COE program of Okayama Universitv.

References

- [1] M. Takagi, T. Kawai, M. Soma, T. Onishi, K. Tamaru, J. Catal. 50 (1977) 441-446.
- [2] J.A. Odriozola, H. Heinemann, G.A. Somorjai, J. Phys. Chem. 95 (1991) 240. [3] J.P. Chen, R.T. Yang, Appl. Catal. A 80 (1992) 135-148.
- [4] J.W. Byrne, J.M. Chen, B.K. Speronello, Catal. Today 13 (1992) 33. [5] J. Muniz, G. Marban, A.B. Fuertes, Appl. Catal. B 23 (1999) 25-35.
- [6] J. Muniz, G. Marban, A.B. Fuertes, Appl. Catal. B 27 (2000) 27-36.
- G. Qi, R.T. Yang, J. Catal. 217 (2003) 434-441. [7]
- [8] R.Q. Long, R.T. Yang, R. Chang, Chem. Commun. (2002) 452-453.
- [9] F. Notoya, C. Su, E. Sasaoka, Ind. Eng. Chem. Res. 40 (2001) 3732-3739.
- [10] M. Yashikawa, A. Yasutake, I. Mochida, Appl. Catal. A 173 (1998) 239-245.
- [11] G. Marban, R. Antuna, A.B. Fuertes, Appl. Catal. B 41 (2003) 323-338.
- [12] Z. Huang, Z. Zhu, Z. Liu, Q. Liu, J. Catal. 214 (214) (2003) 213-219.
- Z. Zhu, Z. Liu, H. Miu, S. Liu, T. Hu, T. Liu, Y. Xie, J. Catal. 197 (2001) 6-16. [13]
- [14] M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 40 (2001) 52-59.
- [15] M. Koebel, G. Madia, M. Elsener, Catal. Today 73 (2002) 239–247.
- [16] A. Kato, S. Matsuda, F. Nakajima, H. Kuroda, T. Narita, J. Phys. Chem. 85 (1981) 4099-4102.
- [17] G. Tuenter, W. Leeuwen, L. Snepvangers, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 633-636.
- [18] R. Marques, P. Darcy, P. Da Costa, H. Mellottee, J.-M. Trichard, G. Djega-Mariadassou, J. Mol. Catal. A 221 (2004) 127-136.
- [19] C. Su, F. Notoya, E. Sasaoka, Ind. Eng. Chem. Res. 42 (2003) 5770-5774.
- [20] S. Kasaoka, E. Sasaoka, M. Nagahiro, K. Kawakami, Nippon Kagaku Kaishi 1 (1979) 138-144.
- [21] Q. Sun, Z.-X. Gao, H.-Y. Chen, W.M.H. Sachtler, J. Catal. 201 (2001) 88-89.
- [22] M. Inomata, K. Mori, A. Miyamoto, T. Ui, Y. Murakami, J. Phys. Chem. 87 (1983) 754-761.
- [23] N.Y. Topsoe, J. Catal. 128 (1991) 499-511.
- [24] T.J. Dines, C.H. Rochester, A.M. Ward, J. Chem. Soc. Faraday Trans. 87 (1991) 1611-1617.
- [25] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Appl. Catal. 64 (1990) 259-278.
- [26] A.P. Kulkarni, D.S. Muggli, Appl. Catal. A: Gen. 302 (2006) 274-282.